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Local isotropy in complex turbulent boundary
layers at high Reynolds number
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Research Center, Moffett Field, CA 94035, USA

(Received 20 January 1997)

To continue our (Saddoughi & Veeravalli 1994) tests of the local-isotropy predictions
of Kolmogorov’s (1941) universal equilibrium theory in shear flows, we have taken
hot-wire measurements of the velocity fluctuations in complex turbulent boundary
layers at several Reynolds numbers. We have studied the plane-of-symmetry flow
upstream of a 4 ft diameter, 6 ft long circular cylinder placed with its axis vertical in
the zero-pressure-gradient turbulent boundary layer of the test-section ceiling in the
80 ft× 120 ft Full-Scale Aerodynamics Facility at NASA Ames Research Center.

In the present experiments, the pressure rises strongly as the obstacle is approached
and in and near the plane of symmetry of the flow the boundary layer is influenced
by the effects of lateral divergence. In addition to the basic mean shear, ∂U/∂y,
the extra mean strain rates are ∂U/∂x, ∂V/∂y and ∂W/∂z. During our experiments
a full-scale F-18 fighter aircraft, set at an angle of attack of 50◦, was present in
the central region of the working section. To identify the effects of the aircraft
on the boundary-layer characteristics upstream of the cylinder, we have also taken
measurements when the wind tunnel was empty. It appears that the presence of the
aircraft in the wind tunnel usefully increases the magnitude of the mean strain rates,
and also significantly increases the large-scale intermittency near the edge of the
boundary layer upstream of the cylinder. The maximum values for the parameters
that have been found to represent the effects of mean shear on turbulence are
S∗(≡ Sq2/ε) ≈ 22 and S∗c (≡ S(ν/ε)1/2) ≈ 0.05, where for the present experiments
S ≡ 2(sijsij/2)1/2.

All of the present results are compared with our plane turbulent boundary-layer
experiments (Saddoughi & Veeravalli 1994). In the present distorted boundary-layer
cases, the maximum Reynolds numbers based on momentum thickness, Rθ , and on
the Taylor (1935) microscale, Rλ, are increased to approximately 510 000 and 2000
respectively. These are the largest attained in laboratory boundary-layer flows: Rθ is
of the same order obtained in flight on a typical commercial aircraft or the space
shuttle.

In general, the current investigations confirm the conclusions of our earlier study.
In summary, it is shown again that one decade of locally isotropic inertial subrange
requires a ratio of the Kolmogorov to mean-shear timescales, S∗c , of not more than
approximately 0.01. In the present non-equilibrium shear layer, this was achieved at
a microscale Reynolds number of approximately 2000.

† Present address: General Electric Corporate Research & Development, K-1, ES-210, One
Research Circle, P.O. Box 8, Schenectady, NY 12301, USA.
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1. Introduction
During the last few years, we (Saddoughi 1993, 1994, 1995; Saddoughi & Veeravalli

1994, hereinafter referred to as I) have conducted high- and low-Reynolds-number
experiments and taken hot-wire measurements of the three components of the ve-
locity fluctuations in the test-section-ceiling boundary layer of the 80 × 120 foot
Full-Scale Aerodynamics Facility at NASA Ames Research Center. The ceiling has
acoustic treatment which has the same effect as surface roughness. The purpose of
these experiments was to test the local-isotropy predictions of Kolmogorov’s (1941)
universal equilibrium theory, which states that at sufficiently high Reynolds numbers
the small-scale structures of turbulent motions are independent of the large-scale
structures and mean deformations. Our goal was to obtain accurate small-scale data
in a variety of flows in the hope that the analysis of these experimental data would
enhance our understanding of the local-isotropy hypothesis. To achieve this goal, our
experiments were divided into two sets.

Our first set of measurements was taken at several Reynolds numbers in a plane
turbulent boundary layer, a ‘simple’ shear flow with the basic mean strain rate S ≡
∂U/∂y. Note that the coordinate system, the symbols used for different variables and
the equations describing the theoretical background for the local-isotropy hypothesis
are all given in I and will not be repeated here. In the 80 ft × 120 ft wind tunnel
the ceiling boundary-layer thickness at our measurement location was approximately
1.1 m for the plane-flow experiments and the maximum Reynolds numbers based
on momentum thickness Rθ , and on Taylor (1935) microscale, Rλ, were 370 000 and
1500 respectively. As mentioned above, the boundary layer developed over a rough
surface, but the Reynolds-stress profiles agreed with canonical data sufficiently well
for our purposes. Spectral and structure-function relations for isotropic turbulence
were used to test the local-isotropy hypothesis, and our results have established the
condition under which local isotropy can be expected in simple shear flows. To within
the accuracy of measurement, the shear-stress cospectral density E12(k1) fell to zero
at a wavenumber about one decade larger than that at which the energy spectra
first followed the − 5

3
power law. At the highest Reynolds number, E12(k1) vanished

about one decade before the start of the dissipation range and remained zero in the
dissipation range.

We showed that the lower wavenumber limit of locally-isotropic behaviour of
the shear-stress cospectra is k1(ε/S

3)1/2 ≈ 10. Our investigation also indicated that
for energy spectra this limit could be relaxed to k1(ε/S

3)1/2 ≈ 3; this is Corrsin’s
(1958) criterion, with the numerical value obtained from our data. The existence
of an isotropic inertial range requires that this wavenumber be much less than
the wavenumber at the onset of viscous effects, k1η � 1, so that the combined
condition (Corrsin 1958 and Uberoi 1957) is S(ν/ε)1/2 � 1. It was observed that in
the dissipation range the energy spectra had a simple exponential decay (Kraichnan
1959) with an exponent prefactor close to the value β = 5.2 obtained in direct
numerical simulations at low Reynolds number. The inertial-range constant for the
three-dimensional spectrum, C , was estimated to be 1.5 ± 0.1 (Monin & Yaglom
1975). Spectral ‘bumps’ between the − 5

3
inertial range and the dissipative range were

observed in all of the compensated energy spectra. The shear-stress cospectra rolled-
off with a − 7

3
power law before the start of local isotropy in the energy spectra, and

scaled linearly with S (Lumley 1967). The constant for the cospectra was estimated
to be C0 ≈ 0.15 (Wyngaard & Cote 1972). Overall, it was shown that one decade of
isotropic inertial subrange requires S(ν/ε)1/2, to be not more than about 0.01: for a
simple shear layer with turbulent kinetic energy production approximately equal to
dissipation, this implies a microscale Reynolds number of about 1500.
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In I, we presented a brief review of the previous experimental and computational
investigations of the local-isotropy hypothesis. Since then there have been further
experimental studies of high-Reynolds-number shear flows: for example, Fernholz
et al. (1995) (large-scale turbulence and some spectral measurements in the wall
boundary layer of a large wind tunnel); D. B. DeGraaff & J. K. Eaton (1996,
personal communication) (large-scale turbulence measurements in the wall boundary
layer of a pressurized wind tunnel); Zagarola et al. (1996) (mean-flow measurements
in the turbulent flow of a pressurized pipe); Miller & Dimotakis (1996) (scalar spectral
measurements in high-Schmidt-number turbulent jets).

There have also been a number of excellent review articles. Bradshaw (1994) reviews
current topics in turbulence research, from very basic questions of turbulence theory
to the important practical question of the reliability of turbulence models, and gives
examples of popular fallacies about the behaviour of turbulence.

Gad-el-Hak & Bandyopadhyay (1994) and Fernholz & Finley (1996) review the
available data in wall-bounded turbulent flows and present very comprehensive discus-
sions of the Reynolds-number effects in these types of flows. In general they conclude
that the mean-flow and large-scale turbulent characteristics at high Reynolds numbers
are poorly understood and that further experimental investigations are needed.

Nelkin’s (1994) extensive review of the experimental and numerical-simulation
data concludes that the small-scale velocity fluctuations in high-Reynolds-number
incompressible turbulent flows exhibit universal behaviour independent of the large-
scale structure. He also emphasizes the need for a fundamental theoretical insight
into the problem of turbulence, the lack of which has hampered progress in solving
this problem for so long (recently, some advances have been made in this direction
by Hill & Wilczak 1995, Lindborg 1995, 1996 and Frisch 1995).

To examine the universality of the Kolmogorov constant for the longitudinal spectra
C1 (see I, equation 7), Sreenivasan (1995) reviewed an extensive set of available data
from experiments that were conducted in a variety of flows (grid turbulence, wall-
bounded and free shear flows, and geophysical flows) over a very large range of
Reynolds numbers (28 6 Rλ 6 18 000). He concluded that all the data for Rλ > 50
(see also Bradshaw 1969) essentially indicate C1 ≈ 0.5, independent of the flow
and the Reynolds number, which is the accepted value for this constant (Monin
& Yaglom 1975). It is appropriate here to mention that a very informative review
paper by Yaglom (1994), which covers Kolmogorov’s scientific and social activities,
providing a complement to the volume of articles in the Proceedings of the Royal
Society, dedicated to the 50th anniversary of Kolmogorov’s ideas (Hunt, Phillips &
Williams 1991).

However, Mydlarski & Warhaft (1996), who took spectral measurements in grid-
generated wind tunnel turbulence in the range 50 6 Rλ 6 473, conclude that not
only is the Kolmogorov constant a weak function of Reynolds number, so too is
the Kolmogorov power-law exponent (nominally − 5

3
) in the inertial subrange: they

propose that the accepted values are obtained only above Rλ ≈ 10 000.
Low-Reynolds-number (40 6 Rλ 6 260) measurements on the centrelines of tur-

bulent wakes behind circular cylinders by Antonia et al. (1996) and Antonia, Zhu &
Shafi (1996) show agreement with local-isotropy predictions for second-order velocity
and temperatur structure functions, and vorticity spectra. However, they indicate that
second- and fourth-order moments of vorticity show departures from local isotropy,
independent of Reynolds number.

Based on the results of their simulations of homogeneous shear flows at a Reynolds-
number range of 50 6 Rλ 6 90, Pumir & Shraiman (1995) and Pumir (1996) conclude
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that the behaviour of the two-point correlation tensor of the vorticity suggests that
as the Reynolds number increases, the small-scale properties of the flow become
isotropic. However, non-zero skewness for the spanwise component of vorticity was
obtained in the range of Reynolds numbers studied, suggesting that locally isotropic
second-order moments may coexist with locally anisotropic higher-order moments.

Recently, an advance was made by Borue & Orszag (1996) in conducting high-
Reynolds-number simulations of shear flows. They performed numerical studies
of three-dimensional Kolmogorov flows at three different Reynolds numbers: Kol-
mogorov flow is inhomogeneous, anisotropic and highly intermittent at large scales. By
using hyperviscous dissipation instead of Newtonian dissipation, they could increase
the effective Reynolds numbers in their simulations. For the maximum resolution
of 2563, Rλ ≈ 1000 was obtained, an order of magnitude larger than the Reynolds
numbers of previous simulations of shear flows (see the references therein for the
other studies where hyperviscosity is used in the numerical simulations). They con-
firmed Pumir’s result and find non-zero skewness for the spanwise component of
vorticity at numerical resolutions of 643 and 1283; however, it can be seen that at
those two resolutions, the components of the one-dimensional spectra did not achieve
local isotropy. They also obtain results similar to our earlier study (I) of a turbulent
boundary layer, and show that the small scales become locally isotropic at the highest
Reynolds number (resolution 2563) of their simulation (these results will be discussed
in more detail in §3).

Therefore, to date a fairly clear picture has emerged: that is, almost all the above
investigations agree with the results of our earlier study and show that in simple
shear flows as the Reynolds number increases – at the least – the statistics of the
second-order moments tend towards Kolmogorov’s local-isotropy predictions.

The effects of extra mean strain rates on the large-scale structure of shear flows have
been investigated extensively (for excellent reviews see Bradshaw 1973; Smits & Wood
1985; Purtell 1992). These extra mean rates of strain produce large nonlinear effects
on the large-scale turbulence structure. The dimensionless parameter which defines the
strength of an extra mean-strain rate, e, was identified by Bradshaw to be e/(∂U/∂y),
and to satisfy the thin-shear-layer assumption, 0.01 6 e/(∂U/∂y) 6 0.1. However, as
pointed out in I, the unanswered question is: will our criteria for the existence of
local isotropy in simple shear flows also hold for ‘complex’ non-equilibrium flows
at high Reynolds numbers? It is imperative that we find an answer to the above
question because of the significant practical importance of complex flows. Therefore,
our second set of experiments was designed to address the above question, and the
results of these investigations are reported in the current paper. Our primary objective
is to investigate the small-scale behaviour in distorted turbulent boundary layers at
different Reynolds numbers, and our experiments adhere to all the requirements listed
in §1.3 of I.

To satisfy the above objective, one possible experiment was to study the plane-
of-symmetry flow upstream of an obstacle placed vertically in a fully developed
two-dimensional turbulent boundary layer; for example, a circular cylinder placed
with its axis perpendicular to a flat plate. A schematic diagram of this flow is shown
in figure 1. Since this flow configuration has practical importance for understanding
the flow physics in the vicinity of a wing–body junction of an aircraft, there have
been a number of experimental investigations dealing with the large-scale structural
changes that occur in this flow (Johnston 1960; Hornung & Joubert 1963; Belik
1973; Mehta 1984; Devenport & Simpson 1990 and the references therein; Smith et
al. 1991, to name a few). In this type of boundary layer, the pressure rises strongly
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Figure 1. A schematic diagram of flow pattern in front of a circular cylinder placed vertically
in a boundary layer: The extra mean-strain rates associated with this flow, and the plane of
measurements for the present investigations, are also indicated.

as the obstacle is approached and in and near the plane of symmetry of the flow the
boundary layer is also influenced by the effects of streamline (or lateral) divergence
(Saddoughi & Joubert 1991). Hence in addition to the basic shear, ∂U/∂y, the extra
mean strain rates involved in the flow are ∂U/∂x, ∂V/∂y and ∂W/∂z: in the plane
of symmetry, ∂V/∂x can be assumed to be very small (see for example Devenport &
Simpson 1990).

To obtain the desired effects, both the height and the diameter of this cylinder
should be at least of the order of the thickness of the boundary layer. Since in our
study the approaching boundary-layer thickness was approximately 1.1 m, our test
cylinder had the following dimensions: D = 1.22 m and height L = 1.83 m, and
this large cylinder had to be fixed to the ceiling of the wind tunnel. This involved
significant construction difficulties, which are discussed in the following section. The
large-scale and small-scale results were taken upstream of this cylinder at the highest
and the lowest (steady mean flow) possible speeds of the 80 ft× 120 ft wind tunnel.

During all of our complex-flow measurements the tunnel runs were dedicated to
our experiments: however, as shown in figure 2, a full-scale F-18 fighter aircraft (wing
span ≈ 11.5 m, length ≈ 16.5 m) set at an angle of attack of 50◦ was present in the
central region of the working section for both our high- and low-speed measurements.
NASA engineers estimate that the wind-tunnel flow blockage due to the aircraft at
this angle of attack is approximately 8%. To identify the effects of the aircraft on the
flow characteristics upstream of the cylinder, the measurements were repeated when
the wind tunnel was empty. It will be seen later that the presence of the aircraft
in the wind tunnel usefully increased the magnitude of mean strain rates upstream
of the cylinder. Therefore, our complex-flow experiments are divided into two cases:
boundary layers under the influence of (i) large and (ii) small extra mean strain rates,
which correspond respectively to measurements (i) with and (ii) without the F-18 in the
wind tunnel. These two flow cases are described here (see also Saddoughi 1994, 1995).
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Figure 2. Large-extra-mean-strain-rate experiments: the relative position of the test cylinder with
respect to the full-scale F-18 fighter aircraft, set at an angle of attack α ≈ 50◦ in the central region
of the 80 ft× 120 ft wind tunnel, is shown. Drawing is to scale.

We again note that (see I) in experimental work it is only possible to concentrate
on a few measures of isotropy, and undoubtedly some are satisfied before others.
Therefore, we cannot be certain whether a state of full local isotropy is obtained.

2. Experimental facilities and techniques
The experiments described here, as in I, were conducted in the boundary layer on

the test-section ceiling of the 80×120 ft wind tunnel at the Full-Scale Aerodynamics
Facility at NASA Ames Research Center. The measurement station for the current
experiments, was close to the location where measurements were taken in I. The only
way to attach an obstacle to the ceiling of the wind tunnel was to use one of the
existing light ports. Since the diameter of our test cylinder was larger than the clear
opening of a typical light port, we had to use two concentric cylinders.

As shown in figure 3, the outer (test) cylinder is a ready-made light-weight Polyethy-
lene tank (wall thickness = 1

4
in., diameter D = 4 ft and height L = 6 ft) and the

inner (support) cylinder is a 1
2

in. thick, 8 in. diameter aluminium (6061-T651) tube,
which extends for about 6 ft into the attic of the wind tunnel through the light port.
A 1

4
in. thick high-density Polyethylene plate and a 1

8
in. thick aluminium plate are

bolted respectively to the inside and outside of the bottom of the Polyethylene tank.
The effective wall thickness at the bottom of the tank is 5

8
in. Another 1

4
in. thick

high-density Polyethylene plate is bolted to the top of the tank. Steel rods are bolted to
the aluminium cylinder and the space between the cylinder and the tank is filled with
high-density Polyurethane foam. This provided us with a fairly light-weight (250 kg)
solid cylinder. From the attic above the test-section ceiling, the support cylinder was
pulled up through the light port and was attached to the attic structures. The NASA
safety requirements were satisfied, and the cylinder and its attachments were designed
for the maximum possible aerodynamic load, and also for dynamic loading due to
seismic activity, with an overall factor of safety of 5 on yield strength.

Another light port upstream of the cylinder was used for traversing the probe
through the boundary layer in the plane of symmetry. These geometrical constraints
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Figure 3. Sideview cut through the test cylinder and its support system as attached to the ceiling
of the 80 ft× 120 ft wind tunnel through a light port. Drawing is not to scale.

fixed our measurement location at x/D ≈ −0.85 with respect to the front surface of
the cylinder. Therefore, as shown in figure 1, our measurement station was located
upstream of the well-known separation region, which starts at x/D ≈ −0.5. At the
same longitudinal measurement station (x/D ≈ −0.85), we have also taken flow yaw-
angle measurements at two spanwise locations. These flow angles were measured with
a three-tube Conrad probe operated in null reading mode.

The measurement conditions, strategy, instrumentation and procedure were all the
same as those explained in §2.1 and in §2.2 of I, and will not be repeated here. Also, as
in I, for the high-speed measurements, we were faced with the f2-noise limitation of
hot-wire anemometry at high frequencies. We recently presented the details of these
investigations (Saddoughi & Veeravalli 1996); but we are aware that nearly three
decades ago this problem was first investigated by Freymuth (1968). Unfortunately,
this limitation still hampers accurate measurements at high frequencies.

3. Results and discussion
In this section the data for our high- and low-speed measurements are presented

in two parts: (i) with the F-18 aircraft present in the working section and (ii) when
the working section was empty. These two cases are referred to as the ‘large’ and



208 S. G. Saddoughi

‘small’ extra-mean-strain-rate experiments respectively. In each part, the experimental
results are divided into ‘large-scale’ and ‘small-scale’ data. Mean-flow velocity and
Reynolds-stress profiles, as well as the large-scale flatness factors are analysed, as in
I, to determine the large-scale characteristics and obtain the parameters governing
the development of the boundary layer. Effects of the distortion of the large eddies
were identified by comparing these profiles with the results from our plane turbulent
boundary-layer study (I). These large-scale results facilitated the choice of points at
which the small-scale measurements were taken.

3.1. Distorted boundary layers: Large-extra-mean-strain-rate experiments

3.1.1. Analysis of large-scale data

The high-speed and low-speed measurements to be discussed here correspond to
the wind-tunnel reference velocities of Uref ≈ 51.25 and 10.75 m s−1 respectively
(measured near the start of the working section). Figure 4 shows the mean-flow
data: in this, and all subsequent figures where profiles of large-scale parameters are
presented, the vertical arrows on the abscissa indicate y-positions at which small-scale
measurements were taken (see §3.1.2).

In figure 4(a), the normalized profiles of the longitudinal mean velocity, U/Uref ,
obtained in I for both high- and low-speed cases are compared with the profiles for
the present distorted boundary layers. The solid line on the present data corresponds
to the least-squares polynomial fit to the high-speed results, which has been used to
obtain the mean-flow integral parameters for these experiments. The shape of the
velocity profile for the distorted boundary layer is typical of flows with large adverse
pressure gradients: note the flattening of the profile in the middle of the layer.

The boundary-layer thickness, δ, has increased compared to I, and is approximately
1350 mm in the distorted boundary layer. Here, the momentum thickness θ and the
shape factor H are approximately 168 mm and 1.8 respectively. The maximum
Reynolds number based on momentum thickness is Rθ ≈ 510 000, which is the largest
ever attained in laboratory boundary-layer flows. It is also instructive to note that
the maximum Rθ of the present complex-flow experiments is of the same order
as those obtained in flight on a typical commercial aircraft, a nuclear submarine
(Rθ ≈ 300 000), or the space shuttle (Rθ ≈ 430 000) (Gad-el-Hak & Bandyopadhyay
1994). All the integral parameters for the present experiments are given in table 1.

Figure 4(b) shows the normalized profiles of the vertical velocity component,
V/Uref . A least-squares polynomial fit to the V profile (the solid line) was used to
obtain the values of ∂V/∂y. The magnitudes of the extra-mean-strain rate due to
the streamline divergence, ∂W/∂z, influencing the plane of symmetry of the flow
can be obtained from (∂W/∂z) = U(∂β/∂z) (see for example Saddoughi & Joubert
1991), where β is the flow yaw angle measured at different spanwise locations z. The
profiles of β measured by our yaw-meter Conrad probe for three spanwise locations
(z/D = −0.21, 0, and 0.21) through the boundary layers are shown in figure 4(c). It can
be seen that, as expected in the plane of symmetry, the crossflow W is approximately
equal to zero. The profiles at the spanwise locations are typical of three-dimensional
boundary layers: larger flow yaw angles near the wall than in the outer part of
the boundary layer. Finally, the continuity equation was used to obtain the ∂U/∂x
values.

The profiles of all these extra-mean-strain rates are shown in figure 5, where they are
compared with the profiles of the basic shear ∂U/∂y for both the plane-flow (I) and
distorted boundary layers. It can be seen from this figure that, as expected (Bradshaw
1973; Smits & Wood 1985), the extra-mean-strain rates mostly affect the outer layer
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Figure 4. Mean-flow data measured at two different free-stream velocities. (a) Normalized lon-
gitudinal mean-velocity profiles, U/Uref , measured in plane (I) and large-extra-mean-strain rate
boundary layers. (b) Normalized vertical mean-velocity profiles, V/Uref , and (c) flow yaw-angle pro-
files, β at different spanwise locations, measured in large-extra-mean-strain rate boundary layers. �,
Uref ≈ 50 m s−1 (Rθ ≈ 370 000) and �, Uref ≈ 10 m s−1 Rθ ≈ 74 000) from I; ⊗, Uref ≈ 51.25 m s−1

Rθ ≈ 510 000) and �, Uref ≈ 10.75 m s−1 (Rθ ≈ 107 000) large-extra-mean-strain rate boundary
layers. Lines are the least-squares polynomial fits to the data for each case. Vertical arrows on the
abscissa indicate y-positions for small-scale measurements in distorted boundary layers.

(here 300 mm 6 y 6 800 mm or 0.2 6 y/δ 6 0.6) of the boundary layer. This figure
also shows that typical absolute values of (∂V/∂y)/(∂U/∂y), (∂W/∂z)/(∂U/∂y), and
(∂U/∂x)/(∂U/∂y) are larger than 0.1, 0.2 and 0.3 respectively. These are very large
values for extra-mean-strain rates and they produce large nonlinear effects on the
large-scale structures of the boundary layers (Bradshaw 1973). The values of these
parameters at the y-positions where small-scale measurements were obtained are
given in table 1. The intensity (or rapidity) of a mean-strain rate can be characterized
by s = (sijsij/2)1/2, (see for example Lee & Reynolds 1985; Saddoughi 1993). For
the present experiments, s = ([(∂U/∂y)2/2 + (∂U/∂x)2 + (∂V/∂y)2 + (∂W/∂z)2]/2)1/2,
and to be consistent with our definition in I, we shall use S = 2s as the equivalent
mean-strain rate.
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Case Low speed High speed

Uref (m s−1) 10.75 51.5
δ (mm) 1350 1350
δ∗ (mm) 298 298
θ (mm) 168 168
Cf 0.00078 0.00078
Uτ (m s−1) 0.186 0.89
Rθ 107 000 510 000

y (mm) 100 300 500 700 100 300 500
y+ 1250 3750 6250 8750 6000 18 000 30 000
U (m s−1) 5.9 7.0 7.4 8.9 22.4 29.6 34.6
∂U/∂y (s−1) 12.9 5.6 4.6 5.0 62.0 27.0 22.0
−∂U/∂x (s−1) 3.5 2.3 1.5 1.7 16.9 10.8 7.2
∂V/∂y (s−1) 1.8 0.8 0.5 0.5 8.4 3.7 2.5
∂W/∂z (s−1) 1.8 1.5 1.0 1.1 8.5 7.1 4.8
S (s−1) 14.3 6.9 5.3 5.8 68.5 33.0 25.2

u2
1 (m2 s−2) 1.23 0.73 0.60 0.29 32.1 23.6 17.8

u2
2 (m2 s−2) 0.34 0.36 0.33 0.20 7.3 8.7 7.2

u2
3 (m2 s−2) 0.60 0.47 0.44 0.23 13.3 11.9 10.2
−u1u2 (m2 s−2) 0.12 0.19 0.17 0.15 3.0 4.3 3.5

(u2
1)1/2/U 0.20 0.13 0.11 0.06 0.25 0.16 0.12

q2 (m2 s−2) 2.17 1.56 1.37 0.72 52.7 44.2 35.2
ε (m2 s−3) 2.18 0.82 0.53 0.19 280 144 92
η (mm) 0.2 0.25 0.28 0.37 0.06 0.07 0.08
Spatial resolution 2.5η 2η 1.8η 1.3η 8.5η 7η 6.5η
fη (kHz) 4.6 4.4 4.2 3.9 60 68 70
Rλ 830 810 820 670 1960 1950 1850
S∗ 14.2 13.0 13.7 22.0 13.0 10.0 9.6
S∗c 0.038 0.03 0.028 0.052 0.015 0.011 0.01

Table 1. Flow parameters for the large-extra-mean-strain-rate experiments
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2/U
2
ref , (c) u2

3/U
2
ref ,

(d) −u1u2/U
2
ref . For key to symbols see figure 4.

The profiles of the Reynolds normal stresses (u2
1/U

2
ref , u

2
2/U

2
ref , u

2
3/U

2
ref) and shear

stress −u1u2/U
2
ref for the distorted boundary layers at high and low speeds are com-

pared with the profiles for the plane-boundary layers (I) in figure 6. The profiles for the
distorted boundary layers are quite different from those in the plane flow. The peaks of

u2
2 and the shear stress, −u1u2, profiles have moved away from the wall to y ≈ 300 mm,

and in the outer part of the layer the values of all the Reynolds stresses have increased,
due to the combined effects of adverse pressure gradient and streamline divergence.
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(Townsend 1976), is also shown. For key to symbols see figure 4.

From figure 6(d) it can be deduced that at the wall τ/ρU2
ref ≈ 0.0003, and from

figure 4(a) that the free stream U/Uref ≈ 0.88. Based on these values the friction
coefficient Cf ≈ 0.00078 is obtained, corresponding to shear velocities Uτ ≈ 0.89 and
0.186 m s−1 for the high- and low-speed cases respectively. It is important to note
that, as in I, the Uτ values are used only to estimate the values of y+ and as a
scaling parameter when our large-scale mean results are compared with those for
other boundary layers: for example, we have used Uτ as the scaling velocity to replot
the Reynolds shear-stress profiles in figure 7. As far as the scaling of the small-scale
data is concerned, the friction velocity will not play any role – the only relevant
mean-flow parameter is S , which, as shown earlier, is obtained by differentiating the
least-square polynomial fits presented in figure 4.

However, the changes in the large-scale structure of the turbulence can be seen
in figure 8, which shows the profiles of Townsend’s (1976) structure parameter,
a1 ≡ (−u1u2/q

2), where q2 (≡ uiui) is twice the turbulent kinetic energy per unit mass.
The very low values of this parameter in the inner part of the boundary layer and
their recovery to the canonical values in the outer part of the layer are due to the
effects of large adverse pressure gradients (see Bradshaw 1967).

The flatness factor of the velocity fluctuations is defined as Fui ≡ u4
i /(u

2
i )

2, where
i = 1, 2 or 3 is a measure of the width of the distribution about the mean, and for
a Gaussian process F = 3. It is known that in the inner half of two-dimensional
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zero-pressure-gradient turbulent boundary layers approximately Gaussian values for
flatness factors are obtained. In the outer half of the boundary layer the Fui values
increase due to the large-scale intermittency and reach their maxima near the edge of
the boundary layer (see for example Klebanoff 1954). Extra mean-strain rates affect
the large-scale intermittency in the outer part of the boundary layers (for a review see
Saddoughi 1989): for example, lateral divergence results in an increase in the extent
of the intermittent region, but adverse pressure gradient apparently has the opposite
effect (Head & Patel 1968; Saddoughi & Joubert 1991). However, Simpson, Chew &
Shivaprasad (1981) concluded that in the log layer and the outer layer of boundary
layers, adverse pressure gradients do not have much effect on the flatness factor.

The profiles of the flatness factors in the present distorted boundary layers, for both
the low- and high-speed cases, are compared with the profiles for the plane-flow case in
figure 9. The flatness Fui ≈ 3 in the inner half of the boundary layer, which includes all
four y-positions where small-scale measurements (see §3.1.2) were taken. Recall that
the boundary-layer thicknesses at the centreline measurement station for the plane
and distorted boundary layers were 1.1 and 1.35 m respectively. The maxima in the Fui
profiles for both cases are located near the boundary-layer edges, but the peaks in the

distorted boundary layers are much larger. The large-scale skewness Sui ≡ u3
i /(u

2
i )

3/2

profiles (not shown) exhibited similar increases in the maximum (absolute) magnitudes
of Su1

and Su2
in the distorted boundary layers (in a two-dimensional mean flow such

as the plane-of-symmetry flow of the present experiments Su3
is nominally zero, see

for example Shiloh, Shivaprasad & Simpson 1981). Overall, these results tend to show
that the fluctuating signals near the edge of the distorted boundary layers (with the
F-18 present in the wind tunnel) are more intermittent and have sharper spikes than
those in the plane boundary layer (I).

3.1.2. Analysis of small-scale data

In this section, the small-scale measurements of the three components of velocity
made for (i) high-speed and (ii) low-speed cases are presented. These measurements
were taken at y = 100, 300 and 500 mm. Recall that in I, measurements were presented
for only two locations, which were called the inner-layer and mid-layer positions. For
the present investigations the y = 100 mm position is still considered to be located
in the inner layer of the boundary layer, since y/δ ≈ 0.074, and y+ ≈ 1250 and 6000
for the low-speed and high-speed cases respectively. The y = 300 mm position was
chosen because the peak of the Reynolds stresses occurred there, and we chose the
y = 500 mm position, because it represents the mid-layer position in I. To investigate
a slight deviation from the local-isotropy predictions that occurred only at the outer-
layer positions in the low-speed case, measurements were also taken at y = 700 mm.
The measurement locations y = 100, 300, 500 and 700 mm will be referred to hereafter
as the inner-layer, maximum-stress, mid-layer and outer-layer positions respectively.
The relevant flow parameters at these positions, for both free-stream velocities, are
given in table 1.

The local turbulence intensities, defined as the r.m.s. longitudinal velocity fluctu-

ations normalized by the local mean velocities, (u2
1)

1/2/U, at y = 100, 300, 500 and
700 mm are approximately equal to 25%, 15%, 12% and 8% respectively. As dis-
cussed in I we use Taylor’s (1935) hypothesis to deduce wavenumber spectra from
frequency spectra. The errors arising from the use of Taylor’s hypothesis can be
calculated using the equations given by Wyngaard & Clifford (1977), which are based
on an extension of Lumley’s (1965) work. The necessary corrections are given as
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equations (20)–(23) in I. The maximum error occurs in the dissipation range, and for
the above four measurement locations, the largest errors (which are in the measure-
ments of the transverse components) are approximately equal to 15%, 8%, 5% and
2% respectively. However, these errors are reduced in the inertial subrange to less
than 5%, 2%, 1% and 1% respectively.

For the current experiments, the Kolmogorov frequency, fη ≡ U/(2πη), where η
was calculated by using the isotropic relation for the dissipation (see I), changed
from approximately 70 kHz in the high-speed measurements to 3.9 kHz in the low-
speed measurements (see table 1 for all the values). Because of the f2 behaviour of
the electronic noise at the tail of the spectrum, and also due to lack of sufficient
hot-wire spatial resolution, the dissipation range, as in I, could not be resolved for
the high-speed case. However, the high-speed results remain very important for the
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investigation of inertial-subrange scaling because they are at a much higher Rλ, and
in this case the measurements are fairly accurate since the errors arising from failure
of Taylor’s hypothesis are very small.

For the low-speed case, measurements were obtained with no contamination from
electronics noise. At the inner-layer position, due to the lack of hot-wire spatial
resolution and fairly large errors arising from Taylor’s hypothesis in the dissipation
range, we can trust our measurements only up to k1η ≈ 0.45. However, hot-wire
resolution and Taylor’s hypothesis improve as one moves away from the wall (see
table 1), and at the outer-layer position (y = 700 mm) our best spatial resolution
(1.3η) is achieved.

Figure 10 is similar to figure 9 of I, and shows Kolmogorov’s universal scaling
of the longitudinal power spectra (I, equations (3) and (7)) of previous experimental
work taken from Chapman (1979), with later additions. As an example of the spectral
measurements in the current investigations, we have added two spectra to this figure.
The data added were taken at Rλ ≈ 2000 and 850 in the high-speed and low-speed
cases respectively. Note that the extent of the − 5

3
range increases with Reynolds

number. The present complex turbulent boundary-layer measurements agree very
well with the previous data.

In the following we first discuss the high-speed measurements and then proceed
to analyse the low-speed data. The microscale Reynolds numbers for the measured
spectra in the high-speed and low-speed sets are of the order of 2000 and 800
respectively. Therefore, one can consider that the two sets represent data taken at
high and low Reynolds numbers. Hence, comparisons of data within each set and
between the two sets show the effects of different mean shear and Reynolds number
respectively.

(i) High-speed experiments

We first examine Kolmogorov’s inertial-subrange scaling laws for spectra (I, equa-
tions (7) and (8)) and structure functions (I, equations (12)–(14)). This is followed
by an investigation of the shear-stress cospectra (I, equations (10) and (30)). Finally,
a consistency test (I, equation (4)) is applied to verify the local-isotropy hypothesis
more directly.

To confirm the inertial-subrange power laws (I, (7) and (8)), we form ‘compensated’

spectra ε−2/3k
5/3
1 Eαα(k1), where α = 1, 2 or 3 (no summation over α). In the inertial

subrange, these should be independent of wavenumber and equal to the Kolmogorov
constants for one-dimensional spectra. In figure 11 the compensated longitudinal (u1)
spectra measured at the three different (inner-layer, maximum-stress and mid-layer)
measurement positions are plotted against k1η. The compensated ninth-order, least-
square polynomial log-log fits of E11(k1) are also included there. As explained in I,
for the high-speed data a good direct estimate for dissipation is not available, and we
have used the method described in I to calculate it. Briefly, this method involves (i)

plotting k
5/3
1 E11(k1) versus k1 (not shown here) and (ii) using equation (7) of I in the

inertial subrange, which indicates that the flat region should be equal to C1ε
2/3. Since

our previous data (I) indicated that C = 1.5 ± 0.1 (where C1 = 18
55
C), we used this

value and the above plots to calculate ε ≈ 280, 144 and 92 m2s−3 at the measurement
positions y = 100, 300 and 500 mm respectively.

It can be seen from figure 11 that at this high Rλ the compensated u1-spectra
exhibit more than one decade of − 5

3
range, but less than the log-log plot (figure 10)

suggested. Figures 12 and 13 show the compensated u2- and u3-spectra respectively
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Figure 11. Compensated longitudinal (u1) spectra measured at different locations in the
large-extra-mean-strain-rate boundary layer for the high-speed case. (a) Mid-layer position
(y = 500 mm, y+ ≈ 30 000, Rλ ≈ 1850). (b) Maximum-stress position (y = 300 mm, y+ ≈ 18 000,
Rλ ≈ 1950). (c) Inner-layer position (y = 100 mm, y+ ≈ 6000, Rλ ≈ 1960). Only the data for
wavenumber range k1η < 0.15 can be accepted. Solid lines are the ninth-order, least-square, log-log
polynomial fits to the spectral data.

for the high-speed case. These transverse spectra contain well-defined − 5
3

ranges

and are, as expected, equal to each other and larger than the u1-spectrum by the 4
3

factor. Since the microscale Reynolds numbers are approximately the same at the
three measurement locations in each figure, one can see the effects of the different
mean shears. For example in figure 12(c), the u2-spectrum measured at the inner-layer
position at Rλ ≈ 2000 does not show a perfectly flat region for the inertial subrange.
However, the spectra for the outer-layer positions, which are at similar (or slightly
smaller) Reynolds numbers, display more than one decade of the expected − 5

3
range.

This is similar to the behaviour observed in the plane-flow high-speed case. As in I (see
references given therein for other investigations and also see Yakhot 1994; Falkovich
1994; Lohse & Muller-Groeling 1995; Borue & Orszag 1996), once a well-defined
inertial subrange is present, all the compensated spectra have a ‘bump’ between the
inertial subrange and the dissipation range.

The structure functions, given by equations (12), (13) and (14) of I, were checked for
consistency with Kolmogorov’s inertial-range scaling laws. As in I, plots of the third-
order structure function for the longitudinal velocity fluctuations I, equation (14),
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Figure 12. As figure 11, but compensated transverse (u2) spectra.

were used to calculate dissipation values at the three measurement locations. These
were approximately 15% lower than those estimated from the spectra. The microscale
Reynolds numbers obtained using these dissipation rates were approximately 2100,
2090 and 1985 at y = 100, 300 and 500 mm respectively. Using these dissipation values,
we investigated the behaviour of the third- and second-order structure functions at
the three measurement locations.

The compensated third- and second-order structure functions, measured at the
maximum-stress position (y = 300 mm), are shown in figures 14 and 15 respectively.
The values of the separation r were calculated using Taylor’s hypothesis, r = τU,
where τ is the time interval and U is the local mean velocity. It is important that
log-linear plots of these structure functions be inspected, rather than the customary
log-log plots which tend to mask the variations that may exist in the inertial subrange.
In these figures, as explained in I, there are three different data sets corresponding
to the three frequency bands used to resolve the large scales, the inertial subrange,
and the dissipation range. Note that figures 14 and 15 contain the actual data, not
polynomial fits. The third-order structure function (figure 14) displays about two
decades of relatively flat correlation.

The three components of the second-order structure functions (figure 15) exhibit
inertial subranges, albeit even at this high Reynolds number the exponents appear
to be slightly different from 2

3
; however, at the outer-layer positions (not shown)

they came closer to the expected value. This behaviour was also observed in I. The
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Figure 13. As figure 11, but compensated transverse (u3) spectra.
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Figure 14. Compensated third-order structure function for longitudinal velocity fluctuations mea-
sured at the maximum-stress position in the large-extra-mean-strain-rate boundary layer for the
high-speed case (y = 300 mm, y+ ≈ 18 000, Rλ ≈ 2090, based on the dissipation from the third-order
structure function).
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layer for the high-speed case (y = 300 mm, y+ ≈ 18 000, Rλ ≈ 2090, based on the dissipation
from the third-order structure function). (a) u1-structure function; (b) u2-structure function; (c)
u3-structure function.

important point is that, at a given position in the boundary layer, the u2- and u3-
structure functions in the inertial subrange were equal to each other and were larger
than the u1-structure function by the factor 4

3
, to within the measurement accuracy. As

can be seen in figure 15, similar to I, the data agrees very well with the Kolmogorov
constant C2 = 2.0, which corresponds to C = 1.5.

The main aim of the present investigation is to study the effects of extra mean-
strain rates on local isotropy. In I the parameters characterizing the effects of mean
shear on turbulence were identified as S∗ ≡ Sq2/ε (see for example Moin 1990) and
S∗c ≡ S(ν/ε)1/2 (Corrsin 1958; Uberoi 1957). Recall that we define S ≡ 2(sijsij/2)1/2.
In general, there is some degree of uncertainty associated with the experimental
estimates of S∗ and S∗c because they involve gradients calculated from data points
that are widely spaced and the dissipation values for the present cases are accurate
to 15% at best. It is also clear that the uncertainties in these parameters are larger in
the present experiments than in I, because we have more sij to evaluate. To calculate
these parameters, we have used the dissipation values obtained from the spectral
measurements, and the values of S obtained by the methods explained in §3.1.1. The
values of these parameters are given in table 1. Note that for this high-speed (or
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high-Reynolds-number) case, the values of S∗c at all the measurement stations are of
the order of 0.01. Recall from I that one decade of isotropic inertial subrange requires
S∗c of not more than about 0.01. However, in this non-equilibrium boundary layer,
this condition requires a higher Reynolds number (Rλ ≈ 2000) than in I (Rλ ≈ 1500).

We analyse the shear-stress cospectra E12(k1), the behaviour of which was described
by Lumley (1967) (and recently by Yakhot 1994; Grossman et al. 1994; and Canuto
& Dubovikov 1996a,b, where they obtain an analytical solution for the cospectra and
compare their results with our data in I). Lumley’s equation (see (30) in I) states
that when k1 is much larger than (S3/ε)1/2, but small compared to the Kolmogorov
wavenumber, the shear-stress cospectrum should scale linearly with S . The cospectra
measured at different locations in the boundary layer for the high-speed case are
shown in figure 16. The collapse achieved by using (ε/S3)1/2 and (ε/S )1/2 as length
and velocity scales respectively is similar to I: the cospectra do apparently follow
the − 7

3
law and scale with S in the inertial subrange, and the − 7

3
range starts at a

non-dimensional wavenumber k1(ε/S
3)1/2 ≈ 1. The value of the constant C0 (from I,

(30)) for one-dimensional cospectra obtained in our plane turbulent boundary-layer
case (I) was approximately 0.15, which agreed with Wyngaard & Cote (1972). In the
present investigations we also estimate C0 ≈ 0.15. Canuto et al.’s (1996) numerical
result predicts the value of the constant to be 145

1729
, and Borue & Orszag (1996)

obtained C0 = 0.2–0.4 in their numerical study.
The behaviour of the cospectra can also be examined in terms of the correlation-

coefficient spectra R12(k1) given by equation (10) in I. If the spectra involved contain
well-defined inertial subranges, such that both u1- and u2-spectra have − 5

3
ranges

and the cospectrum exhibits a − 7
3

power law, then the correlation-coefficient spec-

trum should decay towards isotropy as k
−2/3
1 . In I, we found that these correlation

coefficients decayed algebraically in accordance with the dynamical model of Nelkin
& Nakano (1983) (see also Nelkin 1994). Borue & Orszag (1996) confirmed our
results. The R12(k1) spectra are shown plotted against non-dimensional wavenumber
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Figure 17. Correlation-coefficient spectra measured at different locations in the large-extra-
mean-strain-rate boundary layer for the high-speed case. Wavenumber is scaled using the lengthscale
(ε/S3)1/2. For key to captions for (a–c) see figure 11.

k1(ε/S
3)1/2 in figure 17. As in I, both positive and negative values are inferred from the

measurements in the high-wavenumber ranges at all the measurement stations. This
has been also observed in previous experiments and direct numerical simulations (see
the references in I, and also see Borue & Orszag 1996, who obtain fairly large neg-
ative values at high wavenumbers). We see from figure 17 that for k1(ε/S

3)1/2 > 10,
R12(k1) ≈ 0. This shows that the lower-wavenumber limit of locally-isotropic be-
haviour for complex shear flows at high Reynolds number is k1(ε/S

3)1/2 ≈ 10: this
is the same result we obtained in I. Borue & Orszag (1996) obtained the essentially
equivalent value of about 9 for this limit.

Finally, a direct test of local isotropy is to determine if the data satisfy equation
(4) of I, which states that for isotropic motion, (a) the transverse spectra E22(k1)
and E33(k1) are equal and (b) they are directly related to the longitudinal spectrum
E11(k1) (see for example Batchelor 1953). The ratios of the measured u3-spectrum
to u2-spectrum, Emeas

33 (k1)/E
meas
22 (k1), are shown in figure 18 for 4 × 10−4 6 k1η 6 1,

which covers the entire inertial and dissipation ranges. It appears that, to within
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Figure 18. Ratios of the measured u3-spectra to u2-spectra at different locations in the large-
extra-mean-strain rate boundary layer for the high-speed case. For key to captions for (a–c) see
figure 11.

the accuracy of measurement, at the three locations in the boundary layer the u3-
spectrum becomes equal to the u2-spectrum (condition a) for the wavenumber range
of k1η > 3 × 10−3. Similar to I, the transverse spectra, Ecalc

22 (k1) and Ecalc
33 (k1), can

be calculated from the measured longitudinal spectrum, Emeas
11 (k1), using equation

(4) of I. An anisotropy measure may be defined as Ecalc
αα (k1)/E

meas
αα (k1), where α = 2

or 3 corresponds to u2 or u3 respectively. To satisfy condition (b), these anisotropy
measures should be equal to 1.0 in an isotropic flow. We have used the least-squares-fit
data in figures 11, 12 and 13, to calculate these measures, which are shown in figure 19
scaled by the length (ε/S3)1/2. The data for the plane boundary-layer experiments (I)
are also shown in this figure. We again note that the uncertainty in estimating S in
the present complex-flow case is larger than the plane-flow experiments. However,
it appears that a reasonably good collapse is obtained and local isotropy of energy
spectra is achieved (±10%) in the inertial subrange for non-dimensional wavenumbers
k1(ε/S

3)1/2 > 3.
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Overall, the above spectra and structure functions show that the small-scale be-
haviour in this high-Reynolds-number (Rλ ≈ 2000) turbulent boundary layer with
large extra-mean-strain rate is similar to the zero-pressure-gradient boundary-layer
case in I, and that the data are consistent with the local-isotropy predictions.

(ii) Low-speed experiments

For the low-speed measurements, we begin our analysis with the dissipation-range
spectra because unlike the high-speed case we are able to accurately resolve most of
the dissipation ranges. Recall that for this low-speed case we have four measurement
stations; y = 700, 500, 300 and 100 mm.

The longitudinal dissipation spectra given by the isotropic relation (I, equation
(24), Batchelor 1953) are plotted in non-dimensional form in figure 20. These are
single-wire data. From the area under each of these curves (before normalization) the
dissipation at each position can be calculated. It is clear that for this low-speed case
the entire dissipation ranges are obtained. The scatter (±10%) of the data around the
peak is the result of superimposing the three measurement segments. Integration over
the highest-frequency band (see I for the different frequency bands) for each position,
which covered the entire frequency range of interest, gave ε ≈ 0.19, 0.53, 0.82 and
2.18 m2s−3 for the outer-layer, mid-layer, maximum-stress and inner-layer positions
respectively. The microscale Reynolds numbers at these locations are Rλ ≈ 670, 820,
810 and 830 respectively.

To determine the behaviour of the dissipation-range spectra, we show in figure 21

the compensated spectra ε−2/3k
5/3
1 Eαα(k1) (where α = 1, 2 or 3 and there is no

summation over α) at the outer-layer position for Rλ ≈ 670. Recall that at this
measurement location we obtained our best spatial resolution of 1.3η. For k1η > 0.9
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Figure 20. Longitudinal dissipation spectra measured at different locations in the large-extra-
mean-strain-rate boundary layer for the low-speed case. (a) Outer-layer position (y = 700 mm,
y+ ≈ 8750, Rλ ≈ 670). (b) Mid-layer position (y = 500 mm, y+ ≈ 6250, Rλ ≈ 820). (c) Maxi-
mum-stress position (y = 300 mm, y+ ≈ 3750, Rλ ≈ 810). (d) Inner-layer position (y = 100 mm,
y+ ≈ 1250, Rλ ≈ 830).

the u1-spectrum (single wire) is affected by noise and/or lack of resolution, but
this does not occur in the u2- and u3-spectra (crossed-wire). As in I, the data of
Comte-Bellot & Corrsin (1971) for isotropic grid turbulence at Rλ = 60.7 are included
in figure 21(a) for comparison. The dissipation range of the spectra for the present
investigation is very similar to our low-speed plane boundary-layer measurements (see
I, figure 11): all spectra of figure 21 have an essentially exponential decay (Kraichnan
1959, see I, equation (25) and the references in I) and follow reasonably well the
(DNS) slope β = 5.2 for 0.5 6 k1η 6 1. The extent of the agreement between the
present u1-spectrum and Comte-Bellot & Corrsin’s data is also similar to I. However,
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at Rλ = 60.7.

in the inertial subrange there are some differences between the transverse spectra
of the present low-speed measurements and those of I. These will be addressed
below.

In figure 22 the compensated longitudinal spectra at the four positions for the low-
speed case are plotted against k1η. The compensated ninth-order least-square log-log
polynomial fits of E11(k1) are also included. As described above, the dissipation
value used at each measurement location was obtained from the integration of the
isotropic dissipation relation (I, equation (24)). The u1-spectrum (single wire) at
each measurement location has approximately one decade of − 5

3
range and agrees

reasonably well with the Kolmogorov constant C = 1.5 (i.e. C1 = 18
55
C = 0.491)

(Monin & Yaglom 1975; Saddoughi & Veeravalli 1994; Sreenivasan 1995).
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The compensated u2- and u3-spectra for this case are presented in figures 23
and 24 respectively. Recall that the microscale Reynolds numbers at these four
measurement locations are reasonably close to each other. Therefore, the differences
in the behaviours of spectra at the different locations in the boundary layer may
not be attributed to Reynolds-number effects. These two figures illustrate several
very important points. (i) They show that the extent of − 5

3
range of the transverse

spectra decreases as the wall is approached. This is similar to the behaviour in the
zero-pressure-gradient boundary layer in I. (ii) At the inner-layer position, isotropy is
satisfied and the transverse spectra in the inertial subrange are equal to 4

3
times that
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Figure 23. As figure 22, but compensated transverse (u2) spectra.



Local isotropy in complex turbulent boundary layers 229

(a)

(b)

(c)

0

k1 η
10–5

ε
–2

/3
k

15/
3 E

33
(k

1)

10–4 10–3

C ′1= (4/3) C1

10–2 10–1

0.4

0.8

(d )

1.2

ε
–2

/3
k

15/
3 E

33
(k

1)

C ′1= (4/3) C1

0.4

0.8

1.2

ε
–2

/3
k

15/
3 E

33
(k

1)

C ′1= (4/3) C1

0.4

0.8

1.2

ε
–2

/3
k

15/
3 E

33
(k

1)
C ′1= (4/3) C1

0.4

0.8

1.2

Figure 24. As figure 22, but compensated transverse (u3) spectra.



230 S. G. Saddoughi

of the u1-spectrum. However, as the outer part of the boundary layer is approached,
there is an increased deviation from isotropic behaviour. Recall from §3.1.1 and
figure 5 that in general the extra mean-strain rates mostly affect the outer part (here
300 mm 6 y 6 800 mm or 0.2 6 y/δ 6 0.6) of the boundary layer. In this low-speed
case we obtain very large values for the shear parameters (see table 1); for example,
at y = 700 mm, S ∗c ≈ 0.05 and S∗ ≈ 22, while in our zero-pressure-gradient boundary
layer the maximum value for S∗ was of the order of 10. In the numerical simulations
of shear flows values close to 6 are obtained away from the wall (Lee, Kim & Moin
1990; Borue & Orszag 1996). (iii) All the compensated spectra (see also figure 22)
at the outer-layer position (y = 700 mm) have a new ‘bump’ between the large-scale
range and the inertial subrange. (iv) At all the measurement positions, to within
the accuracy of measurement, the u3- and u2-spectra are equal to each other in the
inertial subrange and dissipation range, as verified in figure 25, where the ratio of the
measured u3-spectrum to u2-spectrum, Emeas

33 (k1)/E
meas
22 (k1), at each position is plotted

against k1η.
In figure 26 we present the compensated third-order structure functions for the

low-speed case. This figure corresponds to figure 14 for the high-speed case, but here
the dissipation values used are those obtained from the spectral measurements. For
the high-speed measurements dissipation values were estimated from the third-order
structure functions. For the low-speed case this is not done because (i) we could
accurately find the dissipation by integrating the dissipation spectrum at each y-
location and (ii) no flat regions could be found in the third-order structure functions
(figure 26) at low speed, which corresponded to fairly low Taylor microscale Reynolds
numbers. However, the overall behaviour of the third-order structure functions in
figure 26 is, as expected, similar to those in the zero-pressure-gradient boundary
layer: the extent of the inertial range reduces as the wall is approached.

The longitudinal second-order structure functions measured in the low-speed case
are shown in figure 27, using the dissipation values obtained from the spectral
measurements. They agree very well in the inertial subrange with the Kolmogorov
constant C2 = 2.0, which indicates that the dissipation values obtained from the
spectral measurements are fairly accurate. Figures 28 and 29 show second-order u2-
and u3-structure functions respectively. The behaviour of these structure functions in
the inertial subrange is similar to the transverse spectra for the low-speed case: at the
inner-layer position, isotropy is obtained and the transverse second-order structure
functions in the inertial subrange are equal to 4

3
times the longitudinal structure

function. However, as the outer part of the boundary layer is approached, there
is an increased deviation from isotropic behaviour. To check the repeatability of
the data, all of the low-speed measurements were taken several times on different
days with different hot-wire elements having different calibrations and using different
anemometers. The run-to-run variations among the data were very small. Also, the
u1-measurements obtained by X-wires in UV - and UW -modes compared well with
the data measured by single wires.

Therefore, it appears that our small-scale measurements in a highly distorted tur-
bulent boundary layer with higher-than-normal large-scale intermittency near the
edge of the layer at high Reynolds number follow the local-isotropy predictions.
For the same flow at low Reynolds number, isotropy is satisfied in the inner-layer
position, but in the outer parts of the boundary layer, the small-scale behaviour
is perhaps better described as having local axisymmetry about the streamwise di-
rection. There the measured transverse components are equal to each other but
they are higher than those the isotropy relations predict. The theory of local



Local isotropy in complex turbulent boundary layers 231

k1η

E
33m

ea
s (

k 1)
/E

22m
ea

s (
k 1)

(b)

0

0.5

1.0

1.5

2.0

10–3

Isotropic

(a)

Start of –5/3 range on u1-spectrum

10–2 10–1 100

Start of  dissipation
range

E
33m

ea
s (

k 1)
/E

22m
ea

s (
k 1)

0.5

1.0

1.5

2.0

Isotropic

Start of –5/3 range on u1-spectrum

Start of  dissipation
range

E
33m

ea
s (

k 1)
/E

22m
ea

s (
k 1)

0.5

1.0

1.5

2.0

Isotropic

Start of –5/3 range on u1-spectrum

Start of  dissipation
range

E
33m

ea
s (

k 1)
/E

22m
ea

s (
k 1)

0.5

1.0

1.5

2.0

Isotropic

2.5

Start of  dissipation
range

(c)

(d)

Start of –5/3 range on u1-spectrum

Figure 25. Ratios of the measured u3-spectra to u2-spectra at different locations in the large-
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figure 20.

axisymmetry – invariance with respect to rotation about a preferred direction –
was first introduced by Batchelor (1946) and was later extended by Chandrasekhar
(1950).

Hill (1980) discusses the enhancement of the Kolmogorov constant and the inertial-
subrange level due to the effects of large-scale intermittency on scalar spectra at
high wavenumbers (see also Kuznetsov, Praskovsky & Sabelnikov 1992). Borue &
Orszag (1996) found that in their Kolmogorov flow, which is highly intermittent
at large scales, the local-isotropy predictions were not satisfied at low Reynolds
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Figure 26. Compensated third-order structure functions for longitudinal velocity fluctuations mea-
sured at different locations in the large-extra-mean-strain-rate boundary layer for the low-speed
case. Dissipation is from the spectral measurements. For key to captions for (a–d) see figure 20.

numbers corresponding to numerical resolutions 643 and 1283, but agreement with
the predictions was obtained at the numerical resolution 2563 (Rλ ≈ 1000). Our
present results are consistent with our observation in I that as the Reynolds number is
decreased, first the transverse and then the longitudinal velocity component variances
deviate from Kolmogorov’s inertial-range laws at low wavenumbers.

In I, we discussed the importance of analysing linear-log plots of the compensated
spectra and structure functions in the inertial subrange. We found that this approach
was also required here since the present data again show clearly that without the use



Local isotropy in complex turbulent boundary layers 233

r/η

(b)

0

1

2

3

100

(a)

101 102 105

(c)

(d )

103 104

ε
–2

/3
r

–2
/3

D
11

(r
)

C2 = 2.0

1

2

3

ε
–2

/3
r

–2
/3

D
11

(r
)

C2 = 2.0

1

2

3

ε
–2

/3
r

–2
/3

D
11

(r
)

C2 = 2.0

1

2

3

ε
–2

/3
r

–2
/3

D
11

(r
)

C2 = 2.0

4

Figure 27. Compensated second-order structure functions for longitudinal velocity fluctuations
measured at different locations in the large-extra-mean-strain-rate boundary layer for the low-speed
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of such plots we would have not been able to see the small deviations from isotropy
at low Reynolds numbers.

The correlation-coefficient spectra, R12(k1) (I, equation (10)), for the low-speed
case are plotted in figure 30. The correlation coefficients start their roll-off before
the beginning of the − 5

3
ranges of longitudinal spectra and fall to zero at high

wavenumbers at all the measurement locations. However, the isotropic value of
zero is obtained only at wavenumbers greater than k1η ≈ 2 × 10−2. This is the non-
dimensional wavenumber that corresponds to the end of the − 5

3
range, and the start of

the spectral ‘bump’ on the u1-spectra (see figure 22). We observed a similar behaviour
for the low-Reynolds-number cases in our plane boundary-layer investigations in I.
Both positive and negative values are found from the measurements in the high-



234 S. G. Saddoughi

r/η

(b)

0

1

2

3

100

(a)

101 102 105

(c)

(d )

103 104

ε
–2

/3
r

–2
/3

D
22

(r
) C ′2 = (4/3) C2

1

2

3

ε
–2

/3
r

–2
/3

D
22

(r
)

1

2

3

ε
–2

/3
r

–2
/3

D
22

(r
)

1

2

3

ε
–2

/3
r

–2
/3

D
22

(r
)

C ′2 = (4/3) C2

C ′2 = (4/3) C2

C ′2 = (4/3) C2

Figure 28. As figure 27, but compensated second-order structure functions for transverse (u2)
velocity fluctuations.

wavenumber ranges for all the measurement stations. However, in the dissipation
range for the present case, at the measurement locations close to the wall, average
values of R12(k1) appear to be slightly negative. The reasons for this behaviour were
discussed earlier and also in I: at the inner-layer station, where the local turbulence
intensity is approximately 25%, the errors arising from Taylor’s hypothesis can be
large in the dissipation range (particularly at low Reynolds numbers, see Heskestad
1965), and the present data appear to follow the trend suggested by Wyngaard &
Clifford (1977). However, recently Hill (1996) has shown that Wyngaard & Clifford’s
formulation greatly overestimates the correction for cospectrum in the dissipation
range, but has the correct sign. Recall from table 1 that as the outer-layer stations
are approached, the local turbulence intensity decreases and the hot-wire spatial
resolution improves. Hence, as seen in figure 30, in the dissipation range of the outer-
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Figure 29. As figure 27, but compensated second-order structure functions for transverse (u3)
velocity fluctuations.

layer station (y = 700 mm), which had the best spatial resolution (1.3η), the average
R12 ≈ 0.

The spectral coherencies defined by equation (11) in I (figure 31), as in I, reach the
isotropic value, H12(k1) ≈ 0, sooner than the correlation-coefficient spectra.

3.2. Distorted boundary layers: Small-extra-mean-strain-rate experiments

In order to isolate the reasons for the slight deviations of the transverse spectra from
the local-isotropy predictions in the outer parts of the distorted boundary layer at
low Reynolds number, we repeated our measurements at low speed upstream of the
cylinder, after the F-18 aircraft was removed from the wind tunnel. In this section
only selected data from these measurements will be presented.
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Figure 30. Correlation-coefficient spectra measured at different locations in the large-extra-
mean-strain-rate boundary layer for the low-speed case. For key to caption for (a–d) see
figure 20.
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Figure 31. Spectral coherency measured at different locations in the large-extra-mean-strain-rate
boundary layer for the low-speed case. For key to captions for (a–d) see figure 20.
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speed (. . . . . . �) compared with plane boundary layer in I (- - - - - ) and large-extra-mean-strain-rate
boundary layer (——— ). (a) Longitudinal component of mean velocity; (b) vertical component of
the Reynolds stress; (c) spanwise component of the flatness factor.

3.2.1. Analysis of large-scale data

The profiles of the longitudinal component of the mean velocity U/Uref , the

vertical component of the Reynolds stress u2
2/U

2
ref , and the spanwise-component

flatness factor, u4
3/(u

2
3)

2, are compared in figure 32 with those obtained for the plane
boundary layer in I and in the large-extra-mean-strain-rate case (with F-18). It is
clear that the removal of the F-18 from the wind tunnel reduces the magnitudes of
the extra mean-strain rates. This reduction can be seen in figure 32(b), where the
vertical component of the Reynolds stress is substantially reduced in the outer parts
of the boundary layer. However, the most significant reduction is observed in the
large-scale tansverse-velocity flatness factors (e.g. figure 32c). This indicates that the
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highly intermittent signals with sharp spikes near the edge of the distorted boundary
layers observed earlier were due to the presence of the F-18 in the wind tunnel.

3.2.2. Analysis of small-scale data

Small-scale measurements of the three components of velocity were made at low
speed for the three locations in the boundary layer (y = 300, 500 and 700 mm)
where slight deviations from local-isotropy predictions were observed in transverse
spectra at low Reynolds numbers. All these data were completely analysed, but we
present here only a small sample of these results. Recall that linear-log plots of
the compensated spectra and structure functions proved to be very sensitive tests of
local-isotropy predictions in the inertial subrange. Therefore, for the present case we
shall only use this type of plot to investigate the isotropy of the small scales.

The compensated longitudinal and transverse spectra taken at the mid-layer lo-
cation (y = 500 mm) and the three components of the compensated second-order
structure functions for the outer-layer station (y = 700 mm) are shown in figures 33
and 34 respectively. These figures (as well as those not shown here) clearly indicate
that, without the F-18 aircraft in the wind tunnel, the transverse spectra and structure
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function.

functions in the inertial subrange at all the measurement stations follow the local-
isotropy predictions: at each station the transverse components are equal to each
other and are larger than the longitudinal component by the 4

3
factor.

4. General discussion and concluding remarks
At several Reynolds numbers, we have taken hot-wire measurements of the velocity

fluctuations in the 1 m thick test-section-ceiling rough-wall boundary layer of the
80 ft× 120 ft Full-Scale Aerodynamics Facility at NASA Ames Research Center, to
test the local-isotropy predictions of Kolmogorov (1941). Our goal has been to obtain
accurate small-scale data in a variety of shear flows. To achieve this goal, our exper-
iments were divided into two sets. Our first set of measurements (Saddoughi & Veer-
avalli 1994, referred to as I) were taken in a ‘simple’ turbulent boundary layer, with the
basic mean strain rate S(≡ ∂U/∂y). Our results established the conditions under which
local isotropy could be expected in simple shear flows. Among other results, we found
that one decade of isotropic inertial subrange requires the ratio of the Kolmogorov to
mean-shear timescales, S∗c (≡ S(ν/ε)1/2) (Corrsin 1958; Uberoi 1957) to be not more
than about 0.01: for a simple shear layer with turbulent energy production ≈ dissipa-
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tion, Rλ ≈ 1500. Since then, most of the experimental and computational investiga-
tions of the local-isotropy hypothesis have agreed with the results of our study in I.

However, the unanswered question was: would our criteria for the existence of local
isotropy in simple shear flows, also hold for ‘complex’ non-equilibrium flows at high
Reynolds numbers? Due to the significant practical importance of complex flows, it
was imperative that an answer to the above question be found. The results of these
investigations are reported here. We studied the plane-of-symmetry flow upstream of
a cylinder placed with its axis perpendicular to the wall (for example, representing
the flow in the vicinity of a wing–body junction). In this flow configuration the
pressure rises strongly as the obstacle is approached and in the plane of symmetry
the boundary layer is influenced by the effects of lateral divergence. The extra mean
strain rates involved are ∂U/∂x, ∂V/∂y and ∂W/∂z (in the plane of symmetry ∂V/∂x
was assumed to be small).

The desired effects can be obtained only if the size of the cylinder is at least of
the order of the approaching boundary-layer thickness. Hence, our cylinder had the
following dimensions: D = 1.22 m and height L = 1.83 m. During all our complex-
flow measurements the tunnel runs were dedicated to our experiments. However, a
full-scale F-18 fighter aircraft set at an angle of attack of 50◦ was present in the central
region of the working section for both of our high- and low-speed measurements.
To identify the effects of the aircraft on the flow characteristics, measurements were
repeated with the tunnel empty. The presence of the aircraft in the tunnel usefully
increased the magnitude of the mean strain rates upstream of the cylinder. Therefore,
our complex-flow experiments were divided into two cases: boundary layers under
the influence of (i) large and (ii) small extra mean-strain rates, which corresponded
respectively to measurements upstream of the cylinder (i) with and (ii) without the
F-18 in the wind tunnel. The results of these experiments were compared with those
from our plane boundary-layer study (I).

In the large-extra-mean-strain-rate case, the boundary-layer thickness at the sin-
gle longitudinal measurement station increased to 1.35 m. The maximum Reynolds
numbers based on momentum thickness, Rθ , and on Taylor microscale, Rλ, were
approximately 510 000 and 2000 respectively. These are the largest attained in labo-
ratory boundary-layer flows: Rθ is of the same order obtained in flight on a typical
commercial aircraft or the space shuttle (Gad-el-Hak & Bandyopadhyay 1994). In the
middle of the boundary layer, typical values of the extra-mean-strain-rate parameters
were e/(∂U/∂y) > 0.6: these are very large values and produce large nonlinear effects
on the large-scale structures of the boundary layers (Bradshaw 1973). Compared
with the plane turbulent boundary-layer case (I) these effects are: (i) the longitudinal
mean-velocity profile becomes flatter in the middle of the layer, (ii) the Reynolds-
stress maxima move away from the wall to y ≈ 300 mm (in the outer part of the
boundary layer the values of all these stresses increase), and (iii) Townsend’s (1976)
structure parameter a1(≡ −u1u2/q

2) drops to very low values in the inner part of the
boundary layer, but recovers its canonical value (≈ 0.13) in the outer part of the
layer (see Bradshaw 1967). Furthermore, the large-scale skewness and flatness factors
indicated that the fluctuating signals near the edge of the boundary layers were more
intermittent and had sharper spikes than in I.

Small-scale measurements were conducted at four locations in the boundary layer,
and they are referred to as the inner-layer, maximum-stress, mid-layer and outer-
layer positions. The maximum values for the shear-rate parameters, S∗(≡ Sq2/ε),
and S∗c were about 22 and 0.05 respectively, where for the present experiments
S ≡ 2(sijsij/2)1/2. Expressions given by Wyngaard & Clifford (1977), based on the
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work of Lumley (1965), were again used to estimate the errors arising from the use of
Taylor’s hypothesis. For the wavenumbers of interest, except in the dissipation range
at the inner-layer position, these errors were small and no correction was applied to
any of the present data.

At high Reynolds numbers (Rλ ≈ 2000) spectra and structure functions in the
inertial subrange for all the measurement stations behaved similarly to those in the
plane boundary-layer experiments (I) and were consistent with the local-isotropy
predictions. Also, as in I, the shear-stress cospectral density E12(k1) rolled-off with
a − 7

3
power law and scaled linearly with S (Lumley 1967). We obtained the same

value as I of the constant for cospectra, C0 ≈ 0.15 (Wyngaard & Cote 1972), and the
correlation-coefficient spectra R12(k1) decayed algebraically (Nelkin & Nakano 1983;
Saddoughi & Veeravalli 1994; Borue & Orszag 1996).

In general, at low Reynolds numbers (Rλ ≈ 800) the data behaved similarly to I: the
energy spectra exhibited exponential decay in the dissipation range (Kraichnan 1959),
the correlation-coefficient spectra started their roll-off before the beginning of the − 5

3
ranges in longitudinal spectra and fell to zero at high wavenumbers, and the spectral
coherencies reached the isotropic value, H12(k1) ≈ 0, sooner than the correlation-
coefficient spectra. The isotropic relation was used to obtain the dissipation at each
measurement location. In the inertial subrange, the generally accepted Kolmogorov
constants for the longitudinal spectrum, C1 ≈ 0.5, and the second-order structure
function, C2 ≈ 2 (Monin & Yaglom 1975; Saddoughi & Veeravalli 1994; Sreenivasan
1995) were obtained.

At each measurement location, the compensated transverse spectra (and second-
order structure functions) were equal to each other, implying local axisymmetry about
the streamwise direction (Batchelor 1946; Chandrasekhar 1950). At the inner-layer
position, isotropy was satisfied and the measured transverse components in the inertial
subrange were equal to 4

3
times that of the measured longitudinal component. How-

ever, as the outer part of the boundary layer was approached there was an increased
deviation from isotropic behaviour. This was attributed to low-Reynolds-number
effects, since our small-scale measurements in the same highly distorted turbulent
boundary layer (with higher-than-normal large-scale intermittency near the edge of
the layer) at high Reynolds number followed the local-isotropy predictions at all the
measurement locations. Hill (1980) discusses the enhancement of the inertial subrange
level due to the effects of large-scale intermittency on scalar spectra, and Borue &
Orszag (1996) found that in their Kolmogorov flow, which is highly intermittent at
large scales, the local-isotropy predictions were not satisfied at low Reynolds numbers,
but agreement with the predictions was obtained at high Reynolds number.

The low-speed measurements were repeated, after the F-18 aircraft was removed
from the wind tunnel. These data indicated reductions in the magnitudes of the
extra mean-strain rates. The Reynolds stresses were reduced in the outer parts of the
boundary layer, and significant reductions were observed in the large-scale tansverse
flatness factors measured near the edge of the boundary layer. These low-Reynolds-
number data showed that the transverse spectra and second-order structure functions
at all the measurement locations followed the local-isotropy predictions. In I we
discussed the importance of analysing linear-log plots of the compensated spectra
and structure functions. We found that it was imperative that this approach be adopted
here also, since the present data showed clearly that without the use of such plots,
we would have not been able to see the intricate behaviour of the inertial subrange.

In summary, the current investigations confirm the conclusions of our earlier study
(I) and show that one decade of locally isotropic inertial subrange requires the ratio of
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the Kolmogorov to mean-shear timescales, S∗c , of not more than approximately 0.01.
However, in the present non-equilibrium boundary layer, this condition required a
higher Reynolds number (Rλ ≈ 2000) than in I (Rλ ≈ 1500). Overall, our complex-flow
experiments have again highlighted an important fact: as long as the high-Reynolds-
number requirement – which is an intrinsic part of the local-isotropy hypothesis –
is satisfied, the small-scale structures of turbulent motions become independent of
large-scale structures and the mean deformation rate (Kolmogorov 1941).
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